INDOLOQUINOLI ZIDINE SYNTHESIS

STEREOCHEMISTRY AND MECHANISM OF CYCLISATION

Mauri Lounasmaa^{*} and Ari Koskinen

Technical University of Helsink i, Department of Chemistry, SF-02150 Espoo 15, Finland

Summary: A stereocontrollcd cyclisation of suitably substituted indole *derivatives can be* explained by the revised Pictet-Spengler reaction mechanism.

The recent observations that the enaminoketone is failed to cyclise to the tetracycle 2a on included in the set of th electrocnemical oxidation but that in the case where n=2 (1b to 2b) the cyclisation proceeded
almost quantitatively² were explained with the Baldwin rules for cyclisation³ which state tha *S-endo-trig* processes (e.g. la to 2a) are disfavoured while *6-endo-trig* processes (e.g. lb to 2b) are favoured.

These findings led us to take a closer look at the mechanism of the widely used Pictet-Spengler type cyclisation of indole derivatives. Investigations by Jackson and Smith 4-7 **have suggested** that in 3-substituted indole derivatives 3, initial attack occurs at the 3-position and the **resultant 3,3-spirocyclic indolenine 4 undergoes a Wagner-Meerwein type rearrangement to the** 2,3-disubstituted system 5^{9,10}.

According to this mechanism, the cyclisation of the dihydropyridine 7¹¹ in acid should produc **the iminium** 8. **Nucleophilic attack of the indole nucleus to the iminium should occur from the** less hindered side thus rendering the product 9a in which the hydrogens at C-12b and C-1 ar ϵ **trans-oriented to each other.**

This stereochemical picture could not be substantiated by experimental data. When the dihydropyridine 7¹¹ was subjected to acid catalysed cyclisation¹²⁻¹⁴, the only product formed was the 12b, *I cis-*product 9b. ¹⁵ In fact, 9b could be obtained in excellent yield, what seems to be the queral case in these cyclisations.^{12,13}The *cis*-relationship of the C-12b, C-1 hydrogens was **confirmed on the basis of NMR data. In 'H NMR the coupling constant between the two protons should be about 2 Hz in 9b and about I6 Hz in 9a. The observed coupling constant was 1.2 Hz thus -..,** strongly in favour of structure $\frac{9b}{20}$. The ¹³C NMR data further substantiate this conclusio

The calculated¹² values for C-12b, C-2 and C-3 are 60.9, 29.4 and 94.4 ppm, respectively, if **the C-l substituent is equatorial while axial substitution gives 57.2, 25.7 and 88.6** ppm, respectively. The observed ¹³C NMR spectrum verifies axial substitution at C-1

The compound 9b can exist in conformational equilibrium by nitrogen inversion and ring inter- ..,." conversion. The rings C and D are assumed to be in half-chair conformations.

In conformer b the axial ethyl group interacts strongly with the c-6 axial hydrogen and in conformer c the N-12 lone-pair and the C-2 pseudoaxial hydrogen become close enough for repulsive interaction. Conformer b is further disfavoured by the low possibility of the lone pair of N-5 conjugating with the a.B-unsaturated methoxycarbonyl system. Thus, conformer a where no appreciable nonbonded interactions are present would be predominant.

Mechanistically, the formation of 9b can be presented as a favoured 5-ezo-tet process 16 involving the tetrahedral intermediate 10 ..+." in which the axial leaving group X (e.g. MeO- from solvent) is *trans* to the ethyl side chain. A normal S_N^2 type displacement then leads to the cis substitution pattern.

References and Notes :

- 1. M. Powell and M. Sainsbury, Tetrahedron Lett. 22, 4751 (1981).
- **2. M.** Sainsbury, Heterocycles 2, 1349 ('978).
- **3.** J.E. Baldwin, J. Chem. Sot. Chem. Comm. **734 (1976).**
- **4.** A.H. Jackson and A.E. Smith, Tetrahedron 22, **403 (1968).**
- **5.** A.H. Jackson and P. Smith, Tetrahedron 24, 2227 (1968).
- $6.$ A.H. Jackson, B. Naidoo and P. Smith, Tetrahedron $2\frac{1}{2}$, 6119 (1968).
- 7. K.M. Biswas and A.H. Jackson, Tetrahedron 25, 227 (1969).
- 8. A. Cipiciani, S. Clementi, P. Linda, G. Marino and G. Savelli, J. Chem. Soc. Perkin II, 1284 (1977).
- 9. J.P. Kutney, in The Total Synthesis of Natural Products vol. 3 (J.ApSimon, ed.) Wiley, N.Y. '977, p. 282.
- lO. F. Ungemach and J.M. Cook, <u>Heterocycles</u> 9, 1089 (1978
- II. Prepared from 6 by dithionite reduction^{17,13}. IR (KBr): 3350, 1690, ¹H NMR (CDC1₃, 6, TMS): 0.95 3H t 7 Hz, 1.86 2H q 7 Hz, 2.10 2H t 7 Hz, 3.02 2H s, 3.33 2H t 7 Hz, 3.66 3H s, 5.46 IH m, 6.89 IH d 2.5 Hz, 6.90-7.65 5H m, 8.69 IH s, 13 C NMR: 11.0 q (CH₂CH₃), 25.8 t (CH₂CH₃), 25.9 t (ArCH₂), 27.4 t (CH₂), 50.6 q (OCH₃), 54.5 (N-CH₂), 95.0 s (=C-COOCH₃), 110.5 s (=C-Et), 111.2 s (In \overline{c} -3), 111.2 d (In \overline{c} -8), 118.0 d (in \overline{c} -5), 119.0 d (In \overline{c} -6), 121.6 d (In \overline{c} -7), **121.6 d (N-CH=C-Et), 122.3** d (In C-2), '26.9 s (In **C-4), 136.1 s (In C-9), 141.2 d** (N-CH=C-COOCH₃), 169.1 s (COOCH₃), MS (rel int %): 310 M⁺ (19), 165 (19), 144 (55), 130 (100).
- 12. M. Lounasmaa and C.-J. Johansson, Tetrahedron 33, 113 (1977).
- 13. M. Lounasmaa, P. Juutinen and P. Kairisalo, Tetrahedron $3\frac{1}{2}$, 2529 (1978).
- 14. M. Lounasmaa and R. Jokela, Tetrahedron Lett., 3609 (1978).
- 15. Compound 9b, mp. 80-2⁰ (MeOH), IR (KBr): 3350, 1675, 1620, ¹H NMR (CDC1₃, δ , TMS): 0.98 3H t 7 Hz, 2.05-2.27 5H m, 2.80 2H t 7 Hz, 3.44 2H t 7 Hz, 3.63 3H s, 4.29 1H d 1.2 Hz, 7.00-7.50 **4H** m, 8.96 IH br s, MS (rel int %): **310 MT (42), 281 (IOD), 279 (30).**
- 16. A recent example of a related process, cf. D.M. Harrison, Tetrahedron Lett. 22, 2501 (1981).

(Received in UK 4 January 1982)